Rizin
unix-like reverse engineering framework and cli tools
X86Disassembler.h
Go to the documentation of this file.
1
//===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
2
//
3
// The LLVM Compiler Infrastructure
4
//
5
// This file is distributed under the University of Illinois Open Source
6
// License. See LICENSE.TXT for details.
7
//
8
//===----------------------------------------------------------------------===//
9
//
10
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
11
// 64-bit X86 instruction sets. The main decode sequence for an assembly
12
// instruction in this disassembler is:
13
//
14
// 1. Read the prefix bytes and determine the attributes of the instruction.
15
// These attributes, recorded in enum attributeBits
16
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
17
// provides a mapping from bitmasks to contexts, which are represented by
18
// enum InstructionContext (ibid.).
19
//
20
// 2. Read the opcode, and determine what kind of opcode it is. The
21
// disassembler distinguishes four kinds of opcodes, which are enumerated in
22
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
23
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
24
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
25
//
26
// 3. Depending on the opcode type, look in one of four ClassDecision structures
27
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
28
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
29
// a ModRMDecision (ibid.).
30
//
31
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
32
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
33
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
34
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
35
// ModR/M byte is required and how to interpret it.
36
//
37
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
38
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
39
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
40
// meanings of its operands.
41
//
42
// 6. For each operand, its encoding is an entry from OperandEncoding
43
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
44
// OperandType (ibid.). The encoding indicates how to read it from the
45
// instruction; the type indicates how to interpret the value once it has
46
// been read. For example, a register operand could be stored in the R/M
47
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
48
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
49
// register, for instance). Given this information, the operands can be
50
// extracted and interpreted.
51
//
52
// 7. As the last step, the disassembler translates the instruction information
53
// and operands into a format understandable by the client - in this case, an
54
// MCInst for use by the MC infrastructure.
55
//
56
// The disassembler is broken broadly into two parts: the table emitter that
57
// emits the instruction decode tables discussed above during compilation, and
58
// the disassembler itself. The table emitter is documented in more detail in
59
// utils/TableGen/X86DisassemblerEmitter.h.
60
//
61
// X86Disassembler.h contains the public interface for the disassembler,
62
// adhering to the MCDisassembler interface.
63
// X86Disassembler.cpp contains the code responsible for step 7, and for
64
// invoking the decoder to execute steps 1-6.
65
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
66
// table emitter and the disassembler.
67
// X86DisassemblerDecoder.h contains the public interface of the decoder,
68
// factored out into C for possible use by other projects.
69
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
70
// responsible for steps 1-6.
71
//
72
//===----------------------------------------------------------------------===//
73
74
/* Capstone Disassembly Engine */
75
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
76
77
#ifndef CS_X86_DISASSEMBLER_H
78
#define CS_X86_DISASSEMBLER_H
79
80
#include "capstone/capstone.h"
81
82
#include "../../MCInst.h"
83
84
#include "../../MCRegisterInfo.h"
85
#include "
X86DisassemblerDecoderCommon.h
"
86
87
bool
X86_getInstruction
(
csh
handle
,
const
uint8_t
*
code
,
size_t
code_len,
88
MCInst
*instr,
uint16_t
*
size
,
uint64_t
address,
void
*
info
);
89
90
void
X86_init
(
MCRegisterInfo
*MRI);
91
92
#endif
X86DisassemblerDecoderCommon.h
X86_init
void X86_init(MCRegisterInfo *MRI)
X86_getInstruction
bool X86_getInstruction(csh handle, const uint8_t *code, size_t code_len, MCInst *instr, uint16_t *size, uint64_t address, void *info)
handle
static mcore_handle handle
Definition:
asm_mcore.c:8
info
RzBinInfo * info(RzBinFile *bf)
Definition:
bin_ne.c:86
csh
size_t csh
Definition:
capstone.h:71
size
voidpf void uLong size
Definition:
ioapi.h:138
uint16_t
unsigned short uint16_t
Definition:
sftypes.h:30
uint64_t
unsigned long uint64_t
Definition:
sftypes.h:28
uint8_t
unsigned char uint8_t
Definition:
sftypes.h:31
MCInst
Definition:
MCInst.h:88
MCRegisterInfo
Definition:
MCRegisterInfo.h:78
code
Definition:
inftree9.h:24
subprojects
capstone-bundled
arch
X86
X86Disassembler.h
Generated by
1.9.1