Rizin
unix-like reverse engineering framework and cli tools
md5.c
Go to the documentation of this file.
1 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
2  according to the definition of MD5 in RFC 1321 from April 1992.
3  Copyright (C) 1995, 1996, 2001, 2003 Free Software Foundation, Inc.
4  NOTE: The canonical source of this file is maintained with the GNU C
5  Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
6 
7  This program is free software; you can redistribute it and/or modify it
8  under the terms of the GNU General Public License as published by the
9  Free Software Foundation; either version 2, or (at your option) any
10  later version.
11 
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with this program; if not, write to the Free Software Foundation,
19  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. */
22 
23 #ifdef HAVE_CONFIG_H
24 # include <config.h>
25 #endif
26 
27 #include <sys/types.h>
28 #include <stdlib.h>
29 #include <string.h>
30 
31 #include <md5.h>
32 
33 #ifdef _LIBC
34 # include <endian.h>
35 # if __BYTE_ORDER == __BIG_ENDIAN
36 # define WORDS_BIGENDIAN 1
37 # endif
38 /* We need to keep the namespace clean so define the MD5 function
39  protected using leading __ . */
40 # define md5_init_ctx __md5_init_ctx
41 # define md5_process_block __md5_process_block
42 # define md5_process_bytes __md5_process_bytes
43 # define md5_finish_ctx __md5_finish_ctx
44 # define md5_read_ctx __md5_read_ctx
45 # define md5_stream __md5_stream
46 # define md5_buffer __md5_buffer
47 #endif
48 
49 #ifdef WORDS_BIGENDIAN
50 # define SWAP(n) \
51  (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
52 #else
53 # define SWAP(n) (n)
54 #endif
55 
56 #define BLOCKSIZE 4096
57 /* Ensure that BLOCKSIZE is a multiple of 64. */
58 #if BLOCKSIZE % 64 != 0
59 /* FIXME-someday (soon?): use #error instead of this kludge. */
60 "invalid BLOCKSIZE"
61 #endif
62 
63 /* This array contains the bytes used to pad the buffer to the next
64  64-byte boundary. (RFC 1321, 3.1: Step 1) */
65 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
66 
67 
68 /* Initialize structure containing state of computation.
69  (RFC 1321, 3.3: Step 3) */
70 void
72 {
73  ctx->A = 0x67452301;
74  ctx->B = 0xefcdab89;
75  ctx->C = 0x98badcfe;
76  ctx->D = 0x10325476;
77 
78  ctx->total[0] = ctx->total[1] = 0;
79  ctx->buflen = 0;
80 }
81 
82 /* Put result from CTX in first 16 bytes following RESBUF. The result
83  must be in little endian byte order.
84 
85  IMPORTANT: On some systems it is required that RESBUF is correctly
86  aligned for a 32 bits value. */
87 void *
88 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
89 {
90  ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
91  ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
92  ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
93  ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
94 
95  return resbuf;
96 }
97 
98 /* Process the remaining bytes in the internal buffer and the usual
99  prolog according to the standard and write the result to RESBUF.
100 
101  IMPORTANT: On some systems it is required that RESBUF is correctly
102  aligned for a 32 bits value. */
103 void *
104 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
105 {
106  /* Take yet unprocessed bytes into account. */
107  md5_uint32 bytes = ctx->buflen;
108  size_t pad;
109 
110  /* Now count remaining bytes. */
111  ctx->total[0] += bytes;
112  if (ctx->total[0] < bytes)
113  ++ctx->total[1];
114 
115  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
116  memcpy (&ctx->buffer[bytes], fillbuf, pad);
117 
118  /* Put the 64-bit file length in *bits* at the end of the buffer. */
119  *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3);
120  *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) |
121  (ctx->total[0] >> 29));
122 
123  /* Process last bytes. */
124  md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
125 
126  return md5_read_ctx (ctx, resbuf);
127 }
128 
129 /* Compute MD5 message digest for bytes read from STREAM. The
130  resulting message digest number will be written into the 16 bytes
131  beginning at RESBLOCK. */
132 int
133 md5_stream (FILE *stream, void *resblock)
134 {
135  struct md5_ctx ctx;
136  char buffer[BLOCKSIZE + 72];
137  size_t sum;
138 
139  /* Initialize the computation context. */
140  md5_init_ctx (&ctx);
141 
142  /* Iterate over full file contents. */
143  while (1)
144  {
145  /* We read the file in blocks of BLOCKSIZE bytes. One call of the
146  computation function processes the whole buffer so that with the
147  next round of the loop another block can be read. */
148  size_t n;
149  sum = 0;
150 
151  /* Read block. Take care for partial reads. */
152  while (1)
153  {
154  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
155 
156  sum += n;
157 
158  if (sum == BLOCKSIZE)
159  break;
160 
161  if (n == 0)
162  {
163  /* Check for the error flag IFF N == 0, so that we don't
164  exit the loop after a partial read due to e.g., EAGAIN
165  or EWOULDBLOCK. */
166  if (ferror (stream))
167  return 1;
168  goto process_partial_block;
169  }
170 
171  /* We've read at least one byte, so ignore errors. But always
172  check for EOF, since feof may be true even though N > 0.
173  Otherwise, we could end up calling fread after EOF. */
174  if (feof (stream))
175  goto process_partial_block;
176  }
177 
178  /* Process buffer with BLOCKSIZE bytes. Note that
179  BLOCKSIZE % 64 == 0
180  */
182  }
183 
184  process_partial_block:;
185 
186  /* Process any remaining bytes. */
187  if (sum > 0)
188  md5_process_bytes (buffer, sum, &ctx);
189 
190  /* Construct result in desired memory. */
191  md5_finish_ctx (&ctx, resblock);
192  return 0;
193 }
194 
195 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
196  result is always in little endian byte order, so that a byte-wise
197  output yields to the wanted ASCII representation of the message
198  digest. */
199 void *
200 md5_buffer (const char *buffer, size_t len, void *resblock)
201 {
202  struct md5_ctx ctx;
203 
204  /* Initialize the computation context. */
205  md5_init_ctx (&ctx);
206 
207  /* Process whole buffer but last len % 64 bytes. */
209 
210  /* Put result in desired memory area. */
211  return md5_finish_ctx (&ctx, resblock);
212 }
213 
214 
215 void
216 md5_process_bytes ( const void *buffer, size_t len, struct md5_ctx *ctx)
217 {
218  /* When we already have some bits in our internal buffer concatenate
219  both inputs first. */
220  if (ctx->buflen != 0)
221  {
222  size_t left_over = ctx->buflen;
223  size_t add = 128 - left_over > len ? len : 128 - left_over;
224 
225  memcpy (&ctx->buffer[left_over], buffer, add);
226  ctx->buflen += add;
227 
228  if (ctx->buflen > 64)
229  {
230  md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
231 
232  ctx->buflen &= 63;
233  /* The regions in the following copy operation cannot overlap. */
234  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
235  ctx->buflen);
236  }
237 
238  buffer = (const char *) buffer + add;
239  len -= add;
240  }
241 
242  /* Process available complete blocks. */
243  if (len >= 64)
244  {
245 #if !_STRING_ARCH_unaligned
246 /* To check alignment gcc has an appropriate operator. Other
247  compilers don't. */
248 # if __GNUC__ >= 2
249 # define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0)
250 # else
251 # define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0)
252 # endif
253  if (UNALIGNED_P (buffer))
254  while (len > 64)
255  {
256  memcpy (ctx->buffer, buffer, 64);
257  md5_process_block (ctx->buffer, 64, ctx);
258  buffer = (const char *) buffer + 64;
259  len -= 64;
260  }
261  else
262 #endif
263  {
264  md5_process_block (buffer, len & ~63, ctx);
265  buffer = (const char *) buffer + (len & ~63);
266  len &= 63;
267  }
268  }
269 
270  /* Move remaining bytes in internal buffer. */
271  if (len > 0)
272  {
273  size_t left_over = ctx->buflen;
274 
275  memcpy (&ctx->buffer[left_over], buffer, len);
276  left_over += len;
277  if (left_over >= 64)
278  {
279  md5_process_block (ctx->buffer, 64, ctx);
280  left_over -= 64;
281  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
282  }
283  ctx->buflen = left_over;
284  }
285 }
286 
287 
288 /* These are the four functions used in the four steps of the MD5 algorithm
289  and defined in the RFC 1321. The first function is a little bit optimized
290  (as found in Colin Plumbs public domain implementation). */
291 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
292 #define FF(b, c, d) (d ^ (b & (c ^ d)))
293 #define FG(b, c, d) FF (d, b, c)
294 #define FH(b, c, d) (b ^ c ^ d)
295 #define FI(b, c, d) (c ^ (b | ~d))
296 
297 /* Process LEN bytes of BUFFER, accumulating context into CTX.
298  It is assumed that LEN % 64 == 0. */
299 
300 void
301 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
302 {
303  md5_uint32 correct_words[16];
304  const md5_uint32 *words = (const md5_uint32 *) buffer;
305  size_t nwords = len / sizeof (md5_uint32);
306  const md5_uint32 *endp = words + nwords;
307  md5_uint32 A = ctx->A;
308  md5_uint32 B = ctx->B;
309  md5_uint32 C = ctx->C;
310  md5_uint32 D = ctx->D;
311 
312  /* First increment the byte count. RFC 1321 specifies the possible
313  length of the file up to 2^64 bits. Here we only compute the
314  number of bytes. Do a double word increment. */
315  ctx->total[0] += len;
316  if (ctx->total[0] < len)
317  ++ctx->total[1];
318 
319  /* Process all bytes in the buffer with 64 bytes in each round of
320  the loop. */
321  while (words < endp)
322  {
323  md5_uint32 *cwp = correct_words;
324  md5_uint32 A_save = A;
325  md5_uint32 B_save = B;
326  md5_uint32 C_save = C;
327  md5_uint32 D_save = D;
328 
329  /* First round: using the given function, the context and a constant
330  the next context is computed. Because the algorithms processing
331  unit is a 32-bit word and it is determined to work on words in
332  little endian byte order we perhaps have to change the byte order
333  before the computation. To reduce the work for the next steps
334  we store the swapped words in the array CORRECT_WORDS. */
335 
336 #define OP(a, b, c, d, s, T) \
337  do \
338  { \
339  a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \
340  ++words; \
341  a = rol (a, s); \
342  a += b; \
343  } \
344  while (0)
345 
346  /* Before we start, one word to the strange constants.
347  They are defined in RFC 1321 as
348 
349  T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64, or
350  perl -e 'foreach(1..64){printf "0x%08x\n", int (4294967296 * abs (sin $_))}'
351  */
352 
353  /* Round 1. */
354  OP (A, B, C, D, 7, 0xd76aa478);
355  OP (D, A, B, C, 12, 0xe8c7b756);
356  OP (C, D, A, B, 17, 0x242070db);
357  OP (B, C, D, A, 22, 0xc1bdceee);
358  OP (A, B, C, D, 7, 0xf57c0faf);
359  OP (D, A, B, C, 12, 0x4787c62a);
360  OP (C, D, A, B, 17, 0xa8304613);
361  OP (B, C, D, A, 22, 0xfd469501);
362  OP (A, B, C, D, 7, 0x698098d8);
363  OP (D, A, B, C, 12, 0x8b44f7af);
364  OP (C, D, A, B, 17, 0xffff5bb1);
365  OP (B, C, D, A, 22, 0x895cd7be);
366  OP (A, B, C, D, 7, 0x6b901122);
367  OP (D, A, B, C, 12, 0xfd987193);
368  OP (C, D, A, B, 17, 0xa679438e);
369  OP (B, C, D, A, 22, 0x49b40821);
370 
371  /* For the second to fourth round we have the possibly swapped words
372  in CORRECT_WORDS. Redefine the macro to take an additional first
373  argument specifying the function to use. */
374 #undef OP
375 #define OP(f, a, b, c, d, k, s, T) \
376  do \
377  { \
378  a += f (b, c, d) + correct_words[k] + T; \
379  a = rol (a, s); \
380  a += b; \
381  } \
382  while (0)
383 
384  /* Round 2. */
385  OP (FG, A, B, C, D, 1, 5, 0xf61e2562);
386  OP (FG, D, A, B, C, 6, 9, 0xc040b340);
387  OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
388  OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
389  OP (FG, A, B, C, D, 5, 5, 0xd62f105d);
390  OP (FG, D, A, B, C, 10, 9, 0x02441453);
391  OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
392  OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
393  OP (FG, A, B, C, D, 9, 5, 0x21e1cde6);
394  OP (FG, D, A, B, C, 14, 9, 0xc33707d6);
395  OP (FG, C, D, A, B, 3, 14, 0xf4d50d87);
396  OP (FG, B, C, D, A, 8, 20, 0x455a14ed);
397  OP (FG, A, B, C, D, 13, 5, 0xa9e3e905);
398  OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8);
399  OP (FG, C, D, A, B, 7, 14, 0x676f02d9);
400  OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
401 
402  /* Round 3. */
403  OP (FH, A, B, C, D, 5, 4, 0xfffa3942);
404  OP (FH, D, A, B, C, 8, 11, 0x8771f681);
405  OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
406  OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
407  OP (FH, A, B, C, D, 1, 4, 0xa4beea44);
408  OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9);
409  OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60);
410  OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
411  OP (FH, A, B, C, D, 13, 4, 0x289b7ec6);
412  OP (FH, D, A, B, C, 0, 11, 0xeaa127fa);
413  OP (FH, C, D, A, B, 3, 16, 0xd4ef3085);
414  OP (FH, B, C, D, A, 6, 23, 0x04881d05);
415  OP (FH, A, B, C, D, 9, 4, 0xd9d4d039);
416  OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
417  OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
418  OP (FH, B, C, D, A, 2, 23, 0xc4ac5665);
419 
420  /* Round 4. */
421  OP (FI, A, B, C, D, 0, 6, 0xf4292244);
422  OP (FI, D, A, B, C, 7, 10, 0x432aff97);
423  OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
424  OP (FI, B, C, D, A, 5, 21, 0xfc93a039);
425  OP (FI, A, B, C, D, 12, 6, 0x655b59c3);
426  OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92);
427  OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
428  OP (FI, B, C, D, A, 1, 21, 0x85845dd1);
429  OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f);
430  OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
431  OP (FI, C, D, A, B, 6, 15, 0xa3014314);
432  OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
433  OP (FI, A, B, C, D, 4, 6, 0xf7537e82);
434  OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
435  OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
436  OP (FI, B, C, D, A, 9, 21, 0xeb86d391);
437 
438  /* Add the starting values of the context. */
439  A += A_save;
440  B += B_save;
441  C += C_save;
442  D += D_save;
443  }
444 
445  /* Put checksum in context given as argument. */
446  ctx->A = A;
447  ctx->B = B;
448  ctx->C = C;
449  ctx->D = D;
450 }
size_t len
Definition: 6502dis.c:15
#define A(x)
Definition: arc.h:165
#define B(x)
Definition: arc.h:166
#define C(x)
Definition: arc.h:167
static ut8 bytes[32]
Definition: asm_arc.c:23
#define D
Definition: block.c:38
voidpf stream
Definition: ioapi.h:138
memcpy(mem, inblock.get(), min(CONTAINING_RECORD(inblock.get(), MEMBLOCK, data) ->size, size))
int n
Definition: mipsasm.c:19
string FILE
Definition: benchmark.py:21
static void pad(RzStrBuf *sb, ut32 count)
Definition: protobuf.c:36
Definition: buffer.h:15
Definition: md5.h:87
#define UNALIGNED_P(p)
void md5_process_bytes(const void *buffer, size_t len, struct md5_ctx *ctx)
Definition: md5.c:216
#define FH(b, c, d)
Definition: md5.c:294
int md5_stream(FILE *stream, void *resblock)
Definition: md5.c:133
#define FG(b, c, d)
Definition: md5.c:293
void * md5_buffer(const char *buffer, size_t len, void *resblock)
Definition: md5.c:200
#define OP(a, b, c, d, s, T)
void md5_process_block(const void *buffer, size_t len, struct md5_ctx *ctx)
Definition: md5.c:301
void md5_init_ctx(struct md5_ctx *ctx)
Definition: md5.c:71
#define FI(b, c, d)
Definition: md5.c:295
#define SWAP(n)
Definition: md5.c:53
static const unsigned char fillbuf[64]
Definition: md5.c:65
void * md5_read_ctx(const struct md5_ctx *ctx, void *resbuf)
Definition: md5.c:88
void * md5_finish_ctx(struct md5_ctx *ctx, void *resbuf)
Definition: md5.c:104
#define BLOCKSIZE
Definition: md5.c:56
unsigned int md5_uint32
Definition: md5.h:59
static int add(char *argv[])
Definition: ziptool.c:84