Rizin
unix-like reverse engineering framework and cli tools
index.c
Go to the documentation of this file.
1 //
5 //
6 // Author: Lasse Collin
7 //
8 // This file has been put into the public domain.
9 // You can do whatever you want with this file.
10 //
12 
13 #include "index.h"
14 #include "stream_flags_common.h"
15 
16 
21 #define INDEX_GROUP_SIZE 512
22 
23 
25 #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26 
27 
29 typedef struct index_tree_node_s index_tree_node;
35 
38 
42 };
43 
44 
46 typedef struct {
49 
54 
58 
61 
62 } index_tree;
63 
64 
65 typedef struct {
68 } index_record;
69 
70 
71 typedef struct {
74 
77 
79  size_t allocated;
80 
82  size_t last;
83 
102  index_record records[];
103 
104 } index_group;
105 
106 
107 typedef struct {
110 
113 
116 
123 
126 
131 
137 
141 
142 } index_stream;
143 
144 
145 struct lzma_index_s {
150 
153 
156 
159 
167 
171  size_t prealloc;
172 
178 };
179 
180 
181 static void
183 {
184  tree->root = NULL;
185  tree->leftmost = NULL;
186  tree->rightmost = NULL;
187  tree->count = 0;
188  return;
189 }
190 
191 
193 static void
195  void (*free_func)(void *node, const lzma_allocator *allocator))
196 {
197  // The tree won't ever be very huge, so recursion should be fine.
198  // 20 levels in the tree is likely quite a lot already in practice.
199  if (node->left != NULL)
200  index_tree_node_end(node->left, allocator, free_func);
201 
202  if (node->right != NULL)
203  index_tree_node_end(node->right, allocator, free_func);
204 
205  free_func(node, allocator);
206  return;
207 }
208 
209 
214 static void
216  void (*free_func)(void *node, const lzma_allocator *allocator))
217 {
218  assert(free_func != NULL);
219 
220  if (tree->root != NULL)
221  index_tree_node_end(tree->root, allocator, free_func);
222 
223  return;
224 }
225 
226 
229 static void
231 {
232  node->parent = tree->rightmost;
233  node->left = NULL;
234  node->right = NULL;
235 
236  ++tree->count;
237 
238  // Handle the special case of adding the first node.
239  if (tree->root == NULL) {
240  tree->root = node;
241  tree->leftmost = node;
242  tree->rightmost = node;
243  return;
244  }
245 
246  // The tree is always filled sequentially.
249 
250  // Add the new node after the rightmost node. It's the correct
251  // place due to the reason above.
252  tree->rightmost->right = node;
253  tree->rightmost = node;
254 
255  // Balance the AVL-tree if needed. We don't need to keep the balance
256  // factors in nodes, because we always fill the tree sequentially,
257  // and thus know the state of the tree just by looking at the node
258  // count. From the node count we can calculate how many steps to go
259  // up in the tree to find the rotation root.
260  uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
261  if (up != 0) {
262  // Locate the root node for the rotation.
263  up = ctz32(tree->count) + 2;
264  do {
265  node = node->parent;
266  } while (--up > 0);
267 
268  // Rotate left using node as the rotation root.
269  index_tree_node *pivot = node->right;
270 
271  if (node->parent == NULL) {
272  tree->root = pivot;
273  } else {
274  assert(node->parent->right == node);
275  node->parent->right = pivot;
276  }
277 
278  pivot->parent = node->parent;
279 
280  node->right = pivot->left;
281  if (node->right != NULL)
282  node->right->parent = node;
283 
284  pivot->left = node;
285  node->parent = pivot;
286  }
287 
288  return;
289 }
290 
291 
293 static void *
295 {
296  if (node->right != NULL) {
297  node = node->right;
298  while (node->left != NULL)
299  node = node->left;
300 
301  return (void *)(node);
302  }
303 
304  while (node->parent != NULL && node->parent->right == node)
305  node = node->parent;
306 
307  return (void *)(node->parent);
308 }
309 
310 
314 static void *
316 {
317  const index_tree_node *result = NULL;
318  const index_tree_node *node = tree->root;
319 
320  assert(tree->leftmost == NULL
321  || tree->leftmost->uncompressed_base == 0);
322 
323  // Consecutive nodes may have the same uncompressed_base.
324  // We must pick the rightmost one.
325  while (node != NULL) {
326  if (node->uncompressed_base > target) {
327  node = node->left;
328  } else {
329  result = node;
330  node = node->right;
331  }
332  }
333 
334  return (void *)(result);
335 }
336 
337 
339 static index_stream *
340 index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
341  uint32_t stream_number, lzma_vli block_number_base,
342  const lzma_allocator *allocator)
343 {
345  if (s == NULL)
346  return NULL;
347 
348  s->node.uncompressed_base = uncompressed_base;
349  s->node.compressed_base = compressed_base;
350  s->node.parent = NULL;
351  s->node.left = NULL;
352  s->node.right = NULL;
353 
354  s->number = stream_number;
355  s->block_number_base = block_number_base;
356 
357  index_tree_init(&s->groups);
358 
359  s->record_count = 0;
360  s->index_list_size = 0;
361  s->stream_flags.version = UINT32_MAX;
362  s->stream_padding = 0;
363 
364  return s;
365 }
366 
367 
369 static void
371 {
372  index_stream *s = node;
373  index_tree_end(&s->groups, allocator, &lzma_free);
375  return;
376 }
377 
378 
379 static lzma_index *
381 {
383  if (i != NULL) {
385  i->uncompressed_size = 0;
386  i->total_size = 0;
387  i->record_count = 0;
388  i->index_list_size = 0;
390  i->checks = 0;
391  }
392 
393  return i;
394 }
395 
396 
398 lzma_index_init(const lzma_allocator *allocator)
399 {
401  if (i == NULL)
402  return NULL;
403 
404  index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
405  if (s == NULL) {
407  return NULL;
408  }
409 
410  index_tree_append(&i->streams, &s->node);
411 
412  return i;
413 }
414 
415 
416 extern LZMA_API(void)
417 lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
418 {
419  // NOTE: If you modify this function, check also the bottom
420  // of lzma_index_cat().
421  if (i != NULL) {
424  }
425 
426  return;
427 }
428 
429 
430 extern void
432 {
433  if (records > PREALLOC_MAX)
434  records = PREALLOC_MAX;
435 
436  i->prealloc = (size_t)(records);
437  return;
438 }
439 
440 
442 lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
443 {
444  // This calculates an upper bound that is only a little bit
445  // bigger than the exact maximum memory usage with the given
446  // parameters.
447 
448  // Typical malloc() overhead is 2 * sizeof(void *) but we take
449  // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
450  // instead would give too inaccurate estimate.
451  const size_t alloc_overhead = 4 * sizeof(void *);
452 
453  // Amount of memory needed for each Stream base structures.
454  // We assume that every Stream has at least one Block and
455  // thus at least one group.
456  const size_t stream_base = sizeof(index_stream)
457  + sizeof(index_group) + 2 * alloc_overhead;
458 
459  // Amount of memory needed per group.
460  const size_t group_base = sizeof(index_group)
461  + INDEX_GROUP_SIZE * sizeof(index_record)
462  + alloc_overhead;
463 
464  // Number of groups. There may actually be more, but that overhead
465  // has been taken into account in stream_base already.
466  const lzma_vli groups
468 
469  // Memory used by index_stream and index_group structures.
470  const uint64_t streams_mem = streams * stream_base;
471  const uint64_t groups_mem = groups * group_base;
472 
473  // Memory used by the base structure.
474  const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
475 
476  // Validate the arguments and catch integer overflows.
477  // Maximum number of Streams is "only" UINT32_MAX, because
478  // that limit is used by the tree containing the Streams.
479  const uint64_t limit = UINT64_MAX - index_base;
480  if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
481  || streams > limit / stream_base
482  || groups > limit / group_base
483  || limit - streams_mem < groups_mem)
484  return UINT64_MAX;
485 
486  return index_base + streams_mem + groups_mem;
487 }
488 
489 
490 extern LZMA_API(uint64_t)
491 lzma_index_memused(const lzma_index *i)
492 {
493  return lzma_index_memusage(i->streams.count, i->record_count);
494 }
495 
496 
497 extern LZMA_API(lzma_vli)
498 lzma_index_block_count(const lzma_index *i)
499 {
500  return i->record_count;
501 }
502 
503 
504 extern LZMA_API(lzma_vli)
505 lzma_index_stream_count(const lzma_index *i)
506 {
507  return i->streams.count;
508 }
509 
510 
511 extern LZMA_API(lzma_vli)
512 lzma_index_size(const lzma_index *i)
513 {
515 }
516 
517 
518 extern LZMA_API(lzma_vli)
519 lzma_index_total_size(const lzma_index *i)
520 {
521  return i->total_size;
522 }
523 
524 
525 extern LZMA_API(lzma_vli)
526 lzma_index_stream_size(const lzma_index *i)
527 {
528  // Stream Header + Blocks + Index + Stream Footer
532 }
533 
534 
535 static lzma_vli
536 index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
537  lzma_vli record_count, lzma_vli index_list_size,
539 {
540  // Earlier Streams and Stream Paddings + Stream Header
541  // + Blocks + Index + Stream Footer + Stream Padding
542  //
543  // This might go over LZMA_VLI_MAX due to too big unpadded_sum
544  // when this function is used in lzma_index_append().
545  lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
546  + stream_padding + vli_ceil4(unpadded_sum);
547  if (file_size > LZMA_VLI_MAX)
548  return LZMA_VLI_UNKNOWN;
549 
550  // The same applies here.
551  file_size += index_size(record_count, index_list_size);
552  if (file_size > LZMA_VLI_MAX)
553  return LZMA_VLI_UNKNOWN;
554 
555  return file_size;
556 }
557 
558 
559 extern LZMA_API(lzma_vli)
560 lzma_index_file_size(const lzma_index *i)
561 {
562  const index_stream *s = (const index_stream *)(i->streams.rightmost);
563  const index_group *g = (const index_group *)(s->groups.rightmost);
564  return index_file_size(s->node.compressed_base,
565  g == NULL ? 0 : g->records[g->last].unpadded_sum,
566  s->record_count, s->index_list_size,
567  s->stream_padding);
568 }
569 
570 
571 extern LZMA_API(lzma_vli)
572 lzma_index_uncompressed_size(const lzma_index *i)
573 {
574  return i->uncompressed_size;
575 }
576 
577 
579 lzma_index_checks(const lzma_index *i)
580 {
581  uint32_t checks = i->checks;
582 
583  // Get the type of the Check of the last Stream too.
584  const index_stream *s = (const index_stream *)(i->streams.rightmost);
585  if (s->stream_flags.version != UINT32_MAX)
586  checks |= UINT32_C(1) << s->stream_flags.check;
587 
588  return checks;
589 }
590 
591 
592 extern uint32_t
594 {
595  return (LZMA_VLI_C(4) - index_size_unpadded(
596  i->record_count, i->index_list_size)) & 3;
597 }
598 
599 
601 lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
602 {
603  if (i == NULL || stream_flags == NULL)
604  return LZMA_PROG_ERROR;
605 
606  // Validate the Stream Flags.
607  return_if_error(lzma_stream_flags_compare(
608  stream_flags, stream_flags));
609 
611  s->stream_flags = *stream_flags;
612 
613  return LZMA_OK;
614 }
615 
616 
617 extern LZMA_API(lzma_ret)
618 lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
619 {
620  if (i == NULL || stream_padding > LZMA_VLI_MAX
621  || (stream_padding & 3) != 0)
622  return LZMA_PROG_ERROR;
623 
625 
626  // Check that the new value won't make the file grow too big.
627  const lzma_vli old_stream_padding = s->stream_padding;
628  s->stream_padding = 0;
629  if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
630  s->stream_padding = old_stream_padding;
631  return LZMA_DATA_ERROR;
632  }
633 
634  s->stream_padding = stream_padding;
635  return LZMA_OK;
636 }
637 
638 
639 extern LZMA_API(lzma_ret)
640 lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
642 {
643  // Validate.
647  return LZMA_PROG_ERROR;
648 
650  index_group *g = (index_group *)(s->groups.rightmost);
651 
652  const lzma_vli compressed_base = g == NULL ? 0
653  : vli_ceil4(g->records[g->last].unpadded_sum);
654  const lzma_vli uncompressed_base = g == NULL ? 0
655  : g->records[g->last].uncompressed_sum;
656  const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
657  + lzma_vli_size(uncompressed_size);
658 
659  // Check that the file size will stay within limits.
660  if (index_file_size(s->node.compressed_base,
661  compressed_base + unpadded_size, s->record_count + 1,
662  s->index_list_size + index_list_size_add,
663  s->stream_padding) == LZMA_VLI_UNKNOWN)
664  return LZMA_DATA_ERROR;
665 
666  // The size of the Index field must not exceed the maximum value
667  // that can be stored in the Backward Size field.
668  if (index_size(i->record_count + 1,
669  i->index_list_size + index_list_size_add)
671  return LZMA_DATA_ERROR;
672 
673  if (g != NULL && g->last + 1 < g->allocated) {
674  // There is space in the last group at least for one Record.
675  ++g->last;
676  } else {
677  // We need to allocate a new group.
678  g = lzma_alloc(sizeof(index_group)
679  + i->prealloc * sizeof(index_record),
680  allocator);
681  if (g == NULL)
682  return LZMA_MEM_ERROR;
683 
684  g->last = 0;
685  g->allocated = i->prealloc;
686 
687  // Reset prealloc so that if the application happens to
688  // add new Records, the allocation size will be sane.
690 
691  // Set the start offsets of this group.
692  g->node.uncompressed_base = uncompressed_base;
693  g->node.compressed_base = compressed_base;
694  g->number_base = s->record_count + 1;
695 
696  // Add the new group to the Stream.
697  index_tree_append(&s->groups, &g->node);
698  }
699 
700  // Add the new Record to the group.
701  g->records[g->last].uncompressed_sum
702  = uncompressed_base + uncompressed_size;
703  g->records[g->last].unpadded_sum
704  = compressed_base + unpadded_size;
705 
706  // Update the totals.
707  ++s->record_count;
708  s->index_list_size += index_list_size_add;
709 
712  ++i->record_count;
713  i->index_list_size += index_list_size_add;
714 
715  return LZMA_OK;
716 }
717 
718 
720 typedef struct {
723 
726 
729 
734 
737 
739 
740 
744 static void
746 {
747  index_stream *left = (index_stream *)(this->node.left);
748  index_stream *right = (index_stream *)(this->node.right);
749 
750  if (left != NULL)
751  index_cat_helper(info, left);
752 
753  this->node.uncompressed_base += info->uncompressed_size;
754  this->node.compressed_base += info->file_size;
755  this->number += info->stream_number_add;
756  this->block_number_base += info->block_number_add;
757  index_tree_append(info->streams, &this->node);
758 
759  if (right != NULL)
760  index_cat_helper(info, right);
761 
762  return;
763 }
764 
765 
766 extern LZMA_API(lzma_ret)
767 lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
768  const lzma_allocator *allocator)
769 {
770  const lzma_vli dest_file_size = lzma_index_file_size(dest);
771 
772  // Check that we don't exceed the file size limits.
773  if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
774  || dest->uncompressed_size + src->uncompressed_size
775  > LZMA_VLI_MAX)
776  return LZMA_DATA_ERROR;
777 
778  // Check that the encoded size of the combined lzma_indexes stays
779  // within limits. In theory, this should be done only if we know
780  // that the user plans to actually combine the Streams and thus
781  // construct a single Index (probably rare). However, exceeding
782  // this limit is quite theoretical, so we do this check always
783  // to simplify things elsewhere.
784  {
785  const lzma_vli dest_size = index_size_unpadded(
786  dest->record_count, dest->index_list_size);
787  const lzma_vli src_size = index_size_unpadded(
789  if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
790  return LZMA_DATA_ERROR;
791  }
792 
793  // Optimize the last group to minimize memory usage. Allocation has
794  // to be done before modifying dest or src.
795  {
796  index_stream *s = (index_stream *)(dest->streams.rightmost);
797  index_group *g = (index_group *)(s->groups.rightmost);
798  if (g != NULL && g->last + 1 < g->allocated) {
799  assert(g->node.left == NULL);
800  assert(g->node.right == NULL);
801 
802  index_group *newg = lzma_alloc(sizeof(index_group)
803  + (g->last + 1)
804  * sizeof(index_record),
805  allocator);
806  if (newg == NULL)
807  return LZMA_MEM_ERROR;
808 
809  newg->node = g->node;
810  newg->allocated = g->last + 1;
811  newg->last = g->last;
812  newg->number_base = g->number_base;
813 
814  memcpy(newg->records, g->records, newg->allocated
815  * sizeof(index_record));
816 
817  if (g->node.parent != NULL) {
818  assert(g->node.parent->right == &g->node);
819  g->node.parent->right = &newg->node;
820  }
821 
822  if (s->groups.leftmost == &g->node) {
823  assert(s->groups.root == &g->node);
824  s->groups.leftmost = &newg->node;
825  s->groups.root = &newg->node;
826  }
827 
828  assert(s->groups.rightmost == &g->node);
829  s->groups.rightmost = &newg->node;
830 
832 
833  // NOTE: newg isn't leaked here because
834  // newg == (void *)&newg->node.
835  }
836  }
837 
838  // Add all the Streams from src to dest. Update the base offsets
839  // of each Stream from src.
840  const index_cat_info info = {
841  .uncompressed_size = dest->uncompressed_size,
842  .file_size = dest_file_size,
843  .stream_number_add = dest->streams.count,
844  .block_number_add = dest->record_count,
845  .streams = &dest->streams,
846  };
848 
849  // Update info about all the combined Streams.
850  dest->uncompressed_size += src->uncompressed_size;
851  dest->total_size += src->total_size;
852  dest->record_count += src->record_count;
853  dest->index_list_size += src->index_list_size;
854  dest->checks = lzma_index_checks(dest) | src->checks;
855 
856  // There's nothing else left in src than the base structure.
858 
859  return LZMA_OK;
860 }
861 
862 
864 static index_stream *
866 {
867  // Catch a somewhat theoretical integer overflow.
869  return NULL;
870 
871  // Allocate and initialize a new Stream.
872  index_stream *dest = index_stream_init(src->node.compressed_base,
873  src->node.uncompressed_base, src->number,
874  src->block_number_base, allocator);
875  if (dest == NULL)
876  return NULL;
877 
878  // Copy the overall information.
879  dest->record_count = src->record_count;
880  dest->index_list_size = src->index_list_size;
881  dest->stream_flags = src->stream_flags;
882  dest->stream_padding = src->stream_padding;
883 
884  // Return if there are no groups to duplicate.
885  if (src->groups.leftmost == NULL)
886  return dest;
887 
888  // Allocate memory for the Records. We put all the Records into
889  // a single group. It's simplest and also tends to make
890  // lzma_index_locate() a little bit faster with very big Indexes.
891  index_group *destg = lzma_alloc(sizeof(index_group)
892  + src->record_count * sizeof(index_record),
893  allocator);
894  if (destg == NULL) {
896  return NULL;
897  }
898 
899  // Initialize destg.
900  destg->node.uncompressed_base = 0;
901  destg->node.compressed_base = 0;
902  destg->number_base = 1;
903  destg->allocated = src->record_count;
904  destg->last = src->record_count - 1;
905 
906  // Go through all the groups in src and copy the Records into destg.
907  const index_group *srcg = (const index_group *)(src->groups.leftmost);
908  size_t i = 0;
909  do {
910  memcpy(destg->records + i, srcg->records,
911  (srcg->last + 1) * sizeof(index_record));
912  i += srcg->last + 1;
913  srcg = index_tree_next(&srcg->node);
914  } while (srcg != NULL);
915 
916  assert(i == destg->allocated);
917 
918  // Add the group to the new Stream.
919  index_tree_append(&dest->groups, &destg->node);
920 
921  return dest;
922 }
923 
924 
926 lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
927 {
928  // Allocate the base structure (no initial Stream).
930  if (dest == NULL)
931  return NULL;
932 
933  // Copy the totals.
934  dest->uncompressed_size = src->uncompressed_size;
935  dest->total_size = src->total_size;
936  dest->record_count = src->record_count;
937  dest->index_list_size = src->index_list_size;
938 
939  // Copy the Streams and the groups in them.
940  const index_stream *srcstream
941  = (const index_stream *)(src->streams.leftmost);
942  do {
943  index_stream *deststream = index_dup_stream(
944  srcstream, allocator);
945  if (deststream == NULL) {
946  lzma_index_end(dest, allocator);
947  return NULL;
948  }
949 
950  index_tree_append(&dest->streams, &deststream->node);
951 
952  srcstream = index_tree_next(&srcstream->node);
953  } while (srcstream != NULL);
954 
955  return dest;
956 }
957 
958 
960 enum {
966 };
967 
968 
970 enum {
974 };
975 
976 
977 static void
979 {
980  const lzma_index *i = iter->internal[ITER_INDEX].p;
981  const index_stream *stream = iter->internal[ITER_STREAM].p;
982  const index_group *group = iter->internal[ITER_GROUP].p;
983  const size_t record = iter->internal[ITER_RECORD].s;
984 
985  // lzma_index_iter.internal must not contain a pointer to the last
986  // group in the index, because that may be reallocated by
987  // lzma_index_cat().
988  if (group == NULL) {
989  // There are no groups.
990  assert(stream->groups.root == NULL);
991  iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
992 
993  } else if (i->streams.rightmost != &stream->node
994  || stream->groups.rightmost != &group->node) {
995  // The group is not not the last group in the index.
996  iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
997 
998  } else if (stream->groups.leftmost != &group->node) {
999  // The group isn't the only group in the Stream, thus we
1000  // know that it must have a parent group i.e. it's not
1001  // the root node.
1002  assert(stream->groups.root != &group->node);
1003  assert(group->node.parent->right == &group->node);
1004  iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
1005  iter->internal[ITER_GROUP].p = group->node.parent;
1006 
1007  } else {
1008  // The Stream has only one group.
1009  assert(stream->groups.root == &group->node);
1010  assert(group->node.parent == NULL);
1011  iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1012  iter->internal[ITER_GROUP].p = NULL;
1013  }
1014 
1015  // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
1016  // internally.
1017  iter->stream.number = stream->number;
1018  iter->stream.block_count = stream->record_count;
1019  iter->stream.compressed_offset = stream->node.compressed_base;
1020  iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1021 
1022  // iter->stream.flags will be NULL if the Stream Flags haven't been
1023  // set with lzma_index_stream_flags().
1024  iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1025  ? NULL : &stream->stream_flags;
1026  iter->stream.padding = stream->stream_padding;
1027 
1028  if (stream->groups.rightmost == NULL) {
1029  // Stream has no Blocks.
1030  iter->stream.compressed_size = index_size(0, 0)
1032  iter->stream.uncompressed_size = 0;
1033  } else {
1034  const index_group *g = (const index_group *)(
1035  stream->groups.rightmost);
1036 
1037  // Stream Header + Stream Footer + Index + Blocks
1038  iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1039  + index_size(stream->record_count,
1040  stream->index_list_size)
1041  + vli_ceil4(g->records[g->last].unpadded_sum);
1042  iter->stream.uncompressed_size
1043  = g->records[g->last].uncompressed_sum;
1044  }
1045 
1046  if (group != NULL) {
1047  iter->block.number_in_stream = group->number_base + record;
1048  iter->block.number_in_file = iter->block.number_in_stream
1049  + stream->block_number_base;
1050 
1051  iter->block.compressed_stream_offset
1052  = record == 0 ? group->node.compressed_base
1053  : vli_ceil4(group->records[
1054  record - 1].unpadded_sum);
1055  iter->block.uncompressed_stream_offset
1056  = record == 0 ? group->node.uncompressed_base
1057  : group->records[record - 1].uncompressed_sum;
1058 
1059  iter->block.uncompressed_size
1060  = group->records[record].uncompressed_sum
1061  - iter->block.uncompressed_stream_offset;
1062  iter->block.unpadded_size
1063  = group->records[record].unpadded_sum
1064  - iter->block.compressed_stream_offset;
1065  iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1066 
1067  iter->block.compressed_stream_offset
1069 
1070  iter->block.compressed_file_offset
1071  = iter->block.compressed_stream_offset
1072  + iter->stream.compressed_offset;
1073  iter->block.uncompressed_file_offset
1074  = iter->block.uncompressed_stream_offset
1075  + iter->stream.uncompressed_offset;
1076  }
1077 
1078  return;
1079 }
1080 
1081 
1082 extern LZMA_API(void)
1083 lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1084 {
1085  iter->internal[ITER_INDEX].p = i;
1086  lzma_index_iter_rewind(iter);
1087  return;
1088 }
1089 
1090 
1091 extern LZMA_API(void)
1092 lzma_index_iter_rewind(lzma_index_iter *iter)
1093 {
1094  iter->internal[ITER_STREAM].p = NULL;
1095  iter->internal[ITER_GROUP].p = NULL;
1096  iter->internal[ITER_RECORD].s = 0;
1097  iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1098  return;
1099 }
1100 
1101 
1103 lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1104 {
1105  // Catch unsupported mode values.
1106  if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1107  return true;
1108 
1109  const lzma_index *i = iter->internal[ITER_INDEX].p;
1110  const index_stream *stream = iter->internal[ITER_STREAM].p;
1111  const index_group *group = NULL;
1112  size_t record = iter->internal[ITER_RECORD].s;
1113 
1114  // If we are being asked for the next Stream, leave group to NULL
1115  // so that the rest of the this function thinks that this Stream
1116  // has no groups and will thus go to the next Stream.
1117  if (mode != LZMA_INDEX_ITER_STREAM) {
1118  // Get the pointer to the current group. See iter_set_inf()
1119  // for explanation.
1120  switch (iter->internal[ITER_METHOD].s) {
1121  case ITER_METHOD_NORMAL:
1122  group = iter->internal[ITER_GROUP].p;
1123  break;
1124 
1125  case ITER_METHOD_NEXT:
1126  group = index_tree_next(iter->internal[ITER_GROUP].p);
1127  break;
1128 
1129  case ITER_METHOD_LEFTMOST:
1130  group = (const index_group *)(
1131  stream->groups.leftmost);
1132  break;
1133  }
1134  }
1135 
1136 again:
1137  if (stream == NULL) {
1138  // We at the beginning of the lzma_index.
1139  // Locate the first Stream.
1140  stream = (const index_stream *)(i->streams.leftmost);
1141  if (mode >= LZMA_INDEX_ITER_BLOCK) {
1142  // Since we are being asked to return information
1143  // about the first a Block, skip Streams that have
1144  // no Blocks.
1145  while (stream->groups.leftmost == NULL) {
1146  stream = index_tree_next(&stream->node);
1147  if (stream == NULL)
1148  return true;
1149  }
1150  }
1151 
1152  // Start from the first Record in the Stream.
1153  group = (const index_group *)(stream->groups.leftmost);
1154  record = 0;
1155 
1156  } else if (group != NULL && record < group->last) {
1157  // The next Record is in the same group.
1158  ++record;
1159 
1160  } else {
1161  // This group has no more Records or this Stream has
1162  // no Blocks at all.
1163  record = 0;
1164 
1165  // If group is not NULL, this Stream has at least one Block
1166  // and thus at least one group. Find the next group.
1167  if (group != NULL)
1168  group = index_tree_next(&group->node);
1169 
1170  if (group == NULL) {
1171  // This Stream has no more Records. Find the next
1172  // Stream. If we are being asked to return information
1173  // about a Block, we skip empty Streams.
1174  do {
1175  stream = index_tree_next(&stream->node);
1176  if (stream == NULL)
1177  return true;
1178  } while (mode >= LZMA_INDEX_ITER_BLOCK
1179  && stream->groups.leftmost == NULL);
1180 
1181  group = (const index_group *)(
1182  stream->groups.leftmost);
1183  }
1184  }
1185 
1187  // We need to look for the next Block again if this Block
1188  // is empty.
1189  if (record == 0) {
1190  if (group->node.uncompressed_base
1191  == group->records[0].uncompressed_sum)
1192  goto again;
1193  } else if (group->records[record - 1].uncompressed_sum
1194  == group->records[record].uncompressed_sum) {
1195  goto again;
1196  }
1197  }
1198 
1199  iter->internal[ITER_STREAM].p = stream;
1200  iter->internal[ITER_GROUP].p = group;
1201  iter->internal[ITER_RECORD].s = record;
1202 
1204 
1205  return false;
1206 }
1207 
1208 
1210 lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1211 {
1212  const lzma_index *i = iter->internal[ITER_INDEX].p;
1213 
1214  // If the target is past the end of the file, return immediately.
1215  if (i->uncompressed_size <= target)
1216  return true;
1217 
1218  // Locate the Stream containing the target offset.
1219  const index_stream *stream = index_tree_locate(&i->streams, target);
1220  assert(stream != NULL);
1221  target -= stream->node.uncompressed_base;
1222 
1223  // Locate the group containing the target offset.
1224  const index_group *group = index_tree_locate(&stream->groups, target);
1225  assert(group != NULL);
1226 
1227  // Use binary search to locate the exact Record. It is the first
1228  // Record whose uncompressed_sum is greater than target.
1229  // This is because we want the rightmost Record that fullfills the
1230  // search criterion. It is possible that there are empty Blocks;
1231  // we don't want to return them.
1232  size_t left = 0;
1233  size_t right = group->last;
1234 
1235  while (left < right) {
1236  const size_t pos = left + (right - left) / 2;
1237  if (group->records[pos].uncompressed_sum <= target)
1238  left = pos + 1;
1239  else
1240  right = pos;
1241  }
1242 
1243  iter->internal[ITER_STREAM].p = stream;
1244  iter->internal[ITER_GROUP].p = group;
1245  iter->internal[ITER_RECORD].s = left;
1246 
1248 
1249  return false;
1250 }
lzma_index ** i
Definition: index.h:629
lzma_index_iter_mode
Operation mode for lzma_index_iter_next()
Definition: index.h:226
@ LZMA_INDEX_ITER_BLOCK
Get the next Block.
Definition: index.h:249
@ LZMA_INDEX_ITER_STREAM
Get the next Stream.
Definition: index.h:238
@ LZMA_INDEX_ITER_NONEMPTY_BLOCK
Get the next non-empty Block.
Definition: index.h:260
const lzma_allocator lzma_vli unpadded_size
Definition: index.h:345
lzma_index * src
Definition: index.h:567
struct lzma_index_s lzma_index
Opaque data type to hold the Index(es) and other information.
Definition: index.h:37
RzBinInfo * info(RzBinFile *bf)
Definition: bin_ne.c:86
const lzma_allocator * allocator
Definition: block.h:377
Handling of Index.
static lzma_vli vli_ceil4(lzma_vli vli)
Round the variable-length integer to the next multiple of four.
Definition: index.h:39
#define UNPADDED_SIZE_MAX
Maximum Unpadded Size.
Definition: index.h:23
static lzma_vli index_size(lzma_vli count, lzma_vli index_list_size)
Calculate the size of the Index field including Index Padding.
Definition: index.h:57
static lzma_vli index_size_unpadded(lzma_vli count, lzma_vli index_list_size)
Calculate the size of the Index field excluding Index Padding.
Definition: index.h:48
#define UNPADDED_SIZE_MIN
Minimum Unpadded Size.
Definition: index.h:20
#define NULL
Definition: cris-opc.c:27
struct @667 g
void lzma_index_prealloc(lzma_index *i, lzma_vli records)
Definition: index.c:431
static void index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator, void(*free_func)(void *node, const lzma_allocator *allocator))
Helper for index_tree_end()
Definition: index.c:194
static void index_stream_end(void *node, const lzma_allocator *allocator)
Free the memory allocated for a Stream and its Record groups.
Definition: index.c:370
static lzma_index * index_init_plain(const lzma_allocator *allocator)
Definition: index.c:380
static lzma_vli index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, lzma_vli record_count, lzma_vli index_list_size, lzma_vli stream_padding)
Definition: index.c:536
LZMA_API(lzma_index *)
Definition: index.c:397
@ ITER_RECORD
Definition: index.c:964
@ ITER_STREAM
Definition: index.c:962
@ ITER_INDEX
Definition: index.c:961
@ ITER_GROUP
Definition: index.c:963
@ ITER_METHOD
Definition: index.c:965
static void iter_set_info(lzma_index_iter *iter)
Definition: index.c:978
static index_stream * index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, uint32_t stream_number, lzma_vli block_number_base, const lzma_allocator *allocator)
Allocate and initialize a new Stream using the given base offsets.
Definition: index.c:340
#define INDEX_GROUP_SIZE
How many Records to allocate at once.
Definition: index.c:21
#define PREALLOC_MAX
How many Records can be allocated at once at maximum.
Definition: index.c:25
static void index_tree_init(index_tree *tree)
Definition: index.c:182
static void index_tree_append(index_tree *tree, index_tree_node *node)
Definition: index.c:230
static void index_tree_end(index_tree *tree, const lzma_allocator *allocator, void(*free_func)(void *node, const lzma_allocator *allocator))
Definition: index.c:215
static void * index_tree_next(const index_tree_node *node)
Get the next node in the tree. Return NULL if there are no more nodes.
Definition: index.c:294
uint32_t lzma_index_padding_size(const lzma_index *i)
Definition: index.c:593
static void * index_tree_locate(const index_tree *tree, lzma_vli target)
Definition: index.c:315
static void index_cat_helper(const index_cat_info *info, index_stream *this)
Definition: index.c:745
@ ITER_METHOD_NORMAL
Definition: index.c:971
@ ITER_METHOD_LEFTMOST
Definition: index.c:973
@ ITER_METHOD_NEXT
Definition: index.c:972
static index_stream * index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
Duplicate an index_stream.
Definition: index.c:865
voidpf stream
Definition: ioapi.h:138
const char int mode
Definition: ioapi.h:137
#define restrict
memcpy(mem, inblock.get(), min(CONTAINING_RECORD(inblock.get(), MEMBLOCK, data) ->size, size))
char * dest
Definition: lz4.h:697
assert(limit<=UINT32_MAX/2)
static uint32_t const uint8_t uint32_t uint32_t limit
Definition: memcmplen.h:45
static RzSocket * s
Definition: rtr.c:28
int size_t
Definition: sftypes.h:40
unsigned int uint32_t
Definition: sftypes.h:29
unsigned long uint64_t
Definition: sftypes.h:28
#define UINT32_C(val)
#define UINT64_MAX
#define UINT32_MAX
#define LZMA_BACKWARD_SIZE_MAX
Definition: stream_flags.h:71
#define LZMA_STREAM_HEADER_SIZE
Size of Stream Header and Stream Footer.
Definition: stream_flags.h:27
Common stuff for Stream flags coders.
Structure to pass info to index_cat_helper()
Definition: index.c:720
index_tree * streams
Destination index' Stream tree.
Definition: index.c:736
lzma_vli file_size
Compressed file size of the destination.
Definition: index.c:725
lzma_vli block_number_add
Same as above but for Block numbers.
Definition: index.c:728
uint32_t stream_number_add
Definition: index.c:733
lzma_vli uncompressed_size
Uncompressed size of the destination.
Definition: index.c:722
size_t last
Index of the last Record in use.
Definition: index.c:82
lzma_vli number_base
Number of Blocks in this Stream before this group.
Definition: index.c:76
size_t allocated
Number of Records that can be put in records[].
Definition: index.c:79
index_tree_node node
Every Record group is part of index_stream.groups tree.
Definition: index.c:73
index_record records[]
Definition: index.c:102
lzma_vli unpadded_sum
Definition: index.c:67
lzma_vli uncompressed_sum
Definition: index.c:66
lzma_vli index_list_size
Definition: index.c:130
index_tree_node node
Every index_stream is a node in the tree of Streams.
Definition: index.c:109
uint32_t number
Number of this Stream (first one is 1)
Definition: index.c:112
lzma_vli block_number_base
Total number of Blocks before this Stream.
Definition: index.c:115
index_tree groups
Definition: index.c:122
lzma_stream_flags stream_flags
Definition: index.c:136
lzma_vli stream_padding
Definition: index.c:140
lzma_vli record_count
Number of Records in this Stream.
Definition: index.c:125
lzma_vli uncompressed_base
Definition: index.c:34
index_tree_node * right
Definition: index.c:41
index_tree_node * left
Definition: index.c:40
index_tree_node * parent
Definition: index.c:39
lzma_vli compressed_base
Compressed start offset of this Stream or Block.
Definition: index.c:37
AVL tree to hold index_stream or index_group structures.
Definition: index.c:46
index_tree_node * rightmost
Definition: index.c:57
uint32_t count
Number of nodes in the tree.
Definition: index.c:60
index_tree_node * leftmost
Definition: index.c:53
index_tree_node * root
Root node.
Definition: index.c:48
Custom functions for memory handling.
Definition: base.h:372
Iterator to get information about Blocks and Streams.
Definition: index.h:43
lzma_vli total_size
Total size of all the Blocks in the Stream(s)
Definition: index.c:155
index_tree streams
Definition: index.c:149
lzma_vli index_list_size
Definition: index.c:166
lzma_vli record_count
Total number of Records in all Streams in this lzma_index.
Definition: index.c:158
size_t prealloc
Definition: index.c:171
lzma_vli uncompressed_size
Uncompressed size of all the Blocks in the Stream(s)
Definition: index.c:152
uint32_t checks
Definition: index.c:177
Options for encoding/decoding Stream Header and Stream Footer.
Definition: stream_flags.h:33
int pos
Definition: main.c:11
#define return_if_error(expr)
Return if expression doesn't evaluate to LZMA_OK.
Definition: common.h:278
void * lzma_alloc(size_t size, const lzma_allocator *allocator) lzma_attribute((__malloc__)) lzma_attr_alloc_size(1)
Allocates memory.
uint64_t stream_padding
Definition: list.c:107
uint32_t checks
Definition: list.c:109
uint64_t streams
Definition: list.c:103
uint64_t uncompressed_size
Definition: list.c:106
uint64_t blocks
Definition: list.c:104
static uint32_t ctz32(uint32_t n)
static uint32_t bsr32(uint32_t n)
Definition: tar.h:52
uint64_t lzma_vli
Variable-length integer type.
Definition: vli.h:63
#define LZMA_VLI_C(n)
VLI constant suffix.
Definition: vli.h:49
#define LZMA_VLI_UNKNOWN
VLI value to denote that the value is unknown.
Definition: vli.h:39
#define LZMA_VLI_MAX
Maximum supported value of a variable-length integer.
Definition: vli.h:34
lzma_ret
Return values used by several functions in liblzma.
Definition: base.h:57
@ LZMA_PROG_ERROR
Programming error.
Definition: base.h:218
@ LZMA_DATA_ERROR
Data is corrupt.
Definition: base.h:172
@ LZMA_MEM_ERROR
Cannot allocate memory.
Definition: base.h:128
@ LZMA_OK
Operation completed successfully.
Definition: base.h:58
unsigned char lzma_bool
Boolean.
Definition: base.h:29
void lzma_free(void *ptr, const lzma_allocator *allocator)
Frees memory.
Definition: common.c:78