Rizin
unix-like reverse engineering framework and cli tools
arch_53.h
Go to the documentation of this file.
1
// SPDX-License-Identifier: LGPL-3.0-only
2
// SPDX-FileCopyrightText: 2017 pancake <pancake@nopcode.org>
3
// SPDX-FileCopyrightText: 2021 Heersin <teablearcher@gmail.com>
4
5
#ifndef BUILD_ARCH_53_H
6
#define BUILD_ARCH_53_H
7
8
#include <
rz_types.h
>
9
#include <
rz_asm.h
>
10
#include <stddef.h>
11
#include "
librz/asm/arch/luac/lua_arch.h
"
12
13
/*===========================================================================
14
We assume that instructions are unsigned numbers.
15
All instructions have an opcode in the first 6 bits.
16
Instructions can have the following fields:
17
'A' : 8 bits
18
'B' : 9 bits
19
'C' : 9 bits
20
'Ax' : 26 bits ('A', 'B', and 'C' together)
21
'Bx' : 18 bits ('B' and 'C' together)
22
'sBx' : signed Bx
23
A signed argument is represented in excess K; that is, the number
24
value is the unsigned value minus K. K is exactly the maximum value
25
for that argument (so that -max is represented by 0, and +max is
26
represented by 2*max), which is half the maximum for the corresponding
27
unsigned argument.
28
===========================================================================*/
29
30
typedef
enum
{
31
iABC
,
32
iABx
,
33
iAsBx
,
34
iAx
35
}
LuaOpMode
;
36
37
/* parameter flags */
38
#define PARAM_A 1
39
#define PARAM_B 2
40
#define PARAM_C 4
41
#define PARAM_Ax 8
42
#define PARAM_Bx 16
43
#define PARAM_sBx 32
44
45
#define has_param_flag(flag, bit) ((flag) & (bit)) ? true : false
46
47
/* Offset of arguments in opcode */
48
#define SIZE_C 9
49
#define SIZE_B 9
50
#define SIZE_Bx (SIZE_C + SIZE_B)
51
#define SIZE_A 8
52
#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A)
53
#define SIZE_OP 6
54
55
#define POS_OP 0
56
#define POS_A (POS_OP + SIZE_OP)
57
#define POS_C (POS_A + SIZE_A)
58
#define POS_B (POS_C + SIZE_C)
59
#define POS_Bx POS_C
60
#define POS_Ax POS_A
61
62
typedef
enum
{
63
/*----------------------------------------------------------------------
64
name args description
65
------------------------------------------------------------------------*/
66
OP_MOVE
,
/* A B R(A) := R(B) */
67
OP_LOADK
,
/* A Bx R(A) := Kst(Bx) */
68
OP_LOADKX
,
/* A R(A) := Kst(extra arg) */
69
OP_LOADBOOL
,
/* A B C R(A) := (Bool)B; if (C) pc++ */
70
OP_LOADNIL
,
/* A B R(A), R(A+1), ..., R(A+B) := nil */
71
OP_GETUPVAL
,
/* A B R(A) := UpValue[B] */
72
73
OP_GETTABUP
,
/* A B C R(A) := UpValue[B][RK(C)] */
74
OP_GETTABLE
,
/* A B C R(A) := R(B)[RK(C)] */
75
76
OP_SETTABUP
,
/* A B C UpValue[A][RK(B)] := RK(C) */
77
OP_SETUPVAL
,
/* A B UpValue[B] := R(A) */
78
OP_SETTABLE
,
/* A B C R(A)[RK(B)] := RK(C) */
79
80
OP_NEWTABLE
,
/* A B C R(A) := {} (size = B,C) */
81
82
OP_SELF
,
/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
83
84
OP_ADD
,
/* A B C R(A) := RK(B) + RK(C) */
85
OP_SUB
,
/* A B C R(A) := RK(B) - RK(C) */
86
OP_MUL
,
/* A B C R(A) := RK(B) * RK(C) */
87
OP_MOD
,
/* A B C R(A) := RK(B) % RK(C) */
88
OP_POW
,
/* A B C R(A) := RK(B) ^ RK(C) */
89
OP_DIV
,
/* A B C R(A) := RK(B) / RK(C) */
90
OP_IDIV
,
/* A B C R(A) := RK(B) // RK(C) */
91
OP_BAND
,
/* A B C R(A) := RK(B) & RK(C) */
92
OP_BOR
,
/* A B C R(A) := RK(B) | RK(C) */
93
OP_BXOR
,
/* A B C R(A) := RK(B) ~ RK(C) */
94
OP_SHL
,
/* A B C R(A) := RK(B) << RK(C) */
95
OP_SHR
,
/* A B C R(A) := RK(B) >> RK(C) */
96
OP_UNM
,
/* A B R(A) := -R(B) */
97
OP_BNOT
,
/* A B R(A) := ~R(B) */
98
OP_NOT
,
/* A B R(A) := not R(B) */
99
OP_LEN
,
/* A B R(A) := length of R(B) */
100
101
OP_CONCAT
,
/* A B C R(A) := R(B).. ... ..R(C) */
102
103
OP_JMP
,
/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
104
OP_EQ
,
/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
105
OP_LT
,
/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
106
OP_LE
,
/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
107
108
OP_TEST
,
/* A C if not (R(A) <=> C) then pc++ */
109
OP_TESTSET
,
/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
110
111
OP_CALL
,
/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
112
OP_TAILCALL
,
/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
113
OP_RETURN
,
/* A B return R(A), ... ,R(A+B-2) (see note) */
114
115
OP_FORLOOP
,
/* A sBx R(A)+=R(A+2);
116
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
117
OP_FORPREP
,
/* A sBx R(A)-=R(A+2); pc+=sBx */
118
119
OP_TFORCALL
,
/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
120
OP_TFORLOOP
,
/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
121
122
OP_SETLIST
,
/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
123
124
OP_CLOSURE
,
/* A Bx R(A) := closure(KPROTO[Bx]) */
125
126
OP_VARARG
,
/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
127
128
OP_EXTRAARG
/* Ax extra (larger) argument for previous opcode */
129
}
LuaOpCode
;
130
131
#define LUA_NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
132
133
#define MAX_INT INT_MAX
/* maximum value of an int */
134
135
#define LUAI_BITSINT 32
136
137
/*
138
** limits for opcode arguments.
139
** we use (signed) int to manipulate most arguments,
140
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
141
*/
142
#if SIZE_Bx < LUAI_BITSINT - 1
143
#define MAXARG_Bx ((1 << SIZE_Bx) - 1)
144
#define MAXARG_sBx (MAXARG_Bx >> 1)
/* 'sBx' is signed */
145
#else
146
#define MAXARG_Bx MAX_INT
147
#define MAXARG_sBx MAX_INT
148
#endif
149
150
#if SIZE_Ax < LUAI_BITSINT - 1
151
#define MAXARG_Ax ((1 << SIZE_Ax) - 1)
152
#else
153
#define MAXARG_Ax MAX_INT
154
#endif
155
156
#define MAXARG_A ((1 << SIZE_A) - 1)
157
#define MAXARG_B ((1 << SIZE_B) - 1)
158
#define MAXARG_C ((1 << SIZE_C) - 1)
159
160
/* creates a mask with 'n' 1 bits at position 'p' */
161
#define MASK1(n, p) ((~((~0u) << (n))) << (p))
162
163
/* creates a mask with 'n' 0 bits at position 'p' */
164
#define MASK0(n, p) (~MASK1(n, p))
165
166
#define cast(x, y) ((x)(y))
167
168
#define GET_OPCODE(i) (cast(LuaOpCode, ((i) >> POS_OP) & MASK1(SIZE_OP, 0)))
169
#define SET_OPCODE(i, o) ((i) = (((i)&MASK0(SIZE_OP, POS_OP)) | \
170
((cast(ut32, o) << POS_OP) & MASK1(SIZE_OP, POS_OP))))
171
172
#define getarg(i, pos, size) (cast(int, ((i) >> (pos)) & MASK1(size, 0)))
173
#define setarg(i, v, pos, size) ((i) = (((i)&MASK0(size, pos)) | \
174
((cast(ut32, v) << (pos)) & MASK1(size, pos))))
175
176
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
177
#define SETARG_A(i, v) setarg(i, v, POS_A, SIZE_A)
178
179
#define GETARG_B(i) getarg(i, POS_B, SIZE_B)
180
#define SETARG_B(i, v) setarg(i, v, POS_B, SIZE_B)
181
182
#define GETARG_C(i) getarg(i, POS_C, SIZE_C)
183
#define SETARG_C(i, v) setarg(i, v, POS_C, SIZE_C)
184
185
#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx)
186
#define SETARG_Bx(i, v) setarg(i, v, POS_Bx, SIZE_Bx)
187
188
#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax)
189
#define SETARG_Ax(i, v) setarg(i, v, POS_Ax, SIZE_Ax)
190
191
#define GETARG_sBx(i) (GETARG_Bx(i) - MAXARG_sBx)
192
#define SETARG_sBx(i, b) SETARG_Bx((i), cast(unsigned int, (b) + MAXARG_sBx))
193
194
#define CREATE_ABC(o, a, b, c) ((cast(ut32, o) << POS_OP) | (cast(ut32, a) << POS_A) | (cast(ut32, b) << POS_B) | (cast(ut32, c) << POS_C))
195
196
#define CREATE_ABx(o, a, bc) ((cast(ut32, o) << POS_OP) | (cast(ut32, a) << POS_A) | (cast(ut32, bc) << POS_Bx))
197
198
#define CREATE_Ax(o, a) ((cast(ut32) << POS_OP) | (cast(ut32, a) << POS_Ax))
199
200
#endif
// BUILD_ARCH_53_H
LuaOpCode
LuaOpCode
Definition:
arch_53.h:62
OP_SETLIST
@ OP_SETLIST
Definition:
arch_53.h:122
OP_CALL
@ OP_CALL
Definition:
arch_53.h:111
OP_EQ
@ OP_EQ
Definition:
arch_53.h:104
OP_VARARG
@ OP_VARARG
Definition:
arch_53.h:126
OP_CONCAT
@ OP_CONCAT
Definition:
arch_53.h:101
OP_BOR
@ OP_BOR
Definition:
arch_53.h:92
OP_SETTABLE
@ OP_SETTABLE
Definition:
arch_53.h:78
OP_POW
@ OP_POW
Definition:
arch_53.h:88
OP_NOT
@ OP_NOT
Definition:
arch_53.h:98
OP_TESTSET
@ OP_TESTSET
Definition:
arch_53.h:109
OP_MOD
@ OP_MOD
Definition:
arch_53.h:87
OP_CLOSURE
@ OP_CLOSURE
Definition:
arch_53.h:124
OP_SETUPVAL
@ OP_SETUPVAL
Definition:
arch_53.h:77
OP_FORPREP
@ OP_FORPREP
Definition:
arch_53.h:117
OP_LEN
@ OP_LEN
Definition:
arch_53.h:99
OP_LOADNIL
@ OP_LOADNIL
Definition:
arch_53.h:70
OP_BAND
@ OP_BAND
Definition:
arch_53.h:91
OP_SELF
@ OP_SELF
Definition:
arch_53.h:82
OP_SUB
@ OP_SUB
Definition:
arch_53.h:85
OP_DIV
@ OP_DIV
Definition:
arch_53.h:89
OP_SHR
@ OP_SHR
Definition:
arch_53.h:95
OP_LT
@ OP_LT
Definition:
arch_53.h:105
OP_TFORLOOP
@ OP_TFORLOOP
Definition:
arch_53.h:120
OP_SHL
@ OP_SHL
Definition:
arch_53.h:94
OP_TEST
@ OP_TEST
Definition:
arch_53.h:108
OP_TFORCALL
@ OP_TFORCALL
Definition:
arch_53.h:119
OP_ADD
@ OP_ADD
Definition:
arch_53.h:84
OP_FORLOOP
@ OP_FORLOOP
Definition:
arch_53.h:115
OP_MUL
@ OP_MUL
Definition:
arch_53.h:86
OP_GETTABLE
@ OP_GETTABLE
Definition:
arch_53.h:74
OP_LOADK
@ OP_LOADK
Definition:
arch_53.h:67
OP_GETUPVAL
@ OP_GETUPVAL
Definition:
arch_53.h:71
OP_SETTABUP
@ OP_SETTABUP
Definition:
arch_53.h:76
OP_IDIV
@ OP_IDIV
Definition:
arch_53.h:90
OP_GETTABUP
@ OP_GETTABUP
Definition:
arch_53.h:73
OP_LE
@ OP_LE
Definition:
arch_53.h:106
OP_RETURN
@ OP_RETURN
Definition:
arch_53.h:113
OP_BNOT
@ OP_BNOT
Definition:
arch_53.h:97
OP_MOVE
@ OP_MOVE
Definition:
arch_53.h:66
OP_UNM
@ OP_UNM
Definition:
arch_53.h:96
OP_EXTRAARG
@ OP_EXTRAARG
Definition:
arch_53.h:128
OP_LOADKX
@ OP_LOADKX
Definition:
arch_53.h:68
OP_NEWTABLE
@ OP_NEWTABLE
Definition:
arch_53.h:80
OP_LOADBOOL
@ OP_LOADBOOL
Definition:
arch_53.h:69
OP_BXOR
@ OP_BXOR
Definition:
arch_53.h:93
OP_JMP
@ OP_JMP
Definition:
arch_53.h:103
OP_TAILCALL
@ OP_TAILCALL
Definition:
arch_53.h:112
LuaOpMode
LuaOpMode
Definition:
arch_53.h:30
iAx
@ iAx
Definition:
arch_53.h:34
iABC
@ iABC
Definition:
arch_53.h:31
iAsBx
@ iAsBx
Definition:
arch_53.h:33
iABx
@ iABx
Definition:
arch_53.h:32
lua_arch.h
rz_asm.h
rz_types.h
librz
asm
arch
luac
v53
arch_53.h
Generated by
1.9.1