Rizin
unix-like reverse engineering framework and cli tools
X86DisassemblerDecoder.h
Go to the documentation of this file.
1 /*===-- X86DisassemblerDecoderInternal.h - Disassembler decoder ---*- C -*-===*
2  *
3  * The LLVM Compiler Infrastructure
4  *
5  * This file is distributed under the University of Illinois Open Source
6  * License. See LICENSE.TXT for details.
7  *
8  *===----------------------------------------------------------------------===*
9  *
10  * This file is part of the X86 Disassembler.
11  * It contains the public interface of the instruction decoder.
12  * Documentation for the disassembler can be found in X86Disassembler.h.
13  *
14  *===----------------------------------------------------------------------===*/
15 
16 /* Capstone Disassembly Engine */
17 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
18 
19 #ifndef CS_X86_DISASSEMBLERDECODER_H
20 #define CS_X86_DISASSEMBLERDECODER_H
21 
22 #if defined(CAPSTONE_HAS_OSXKERNEL)
23 #include <libkern/libkern.h>
24 #else
25 #include <stdio.h>
26 #endif
27 
29 
30 /*
31  * Accessor functions for various fields of an Intel instruction
32  */
33 #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6)
34 #define regFromModRM(modRM) (((modRM) & 0x38) >> 3)
35 #define rmFromModRM(modRM) ((modRM) & 0x7)
36 #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6)
37 #define indexFromSIB(sib) (((sib) & 0x38) >> 3)
38 #define baseFromSIB(sib) ((sib) & 0x7)
39 #define wFromREX(rex) (((rex) & 0x8) >> 3)
40 #define rFromREX(rex) (((rex) & 0x4) >> 2)
41 #define xFromREX(rex) (((rex) & 0x2) >> 1)
42 #define bFromREX(rex) ((rex) & 0x1)
43 
44 #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7)
45 #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6)
46 #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5)
47 #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4)
48 #define mmFromEVEX2of4(evex) ((evex) & 0x3)
49 #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7)
50 #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3)
51 #define ppFromEVEX3of4(evex) ((evex) & 0x3)
52 #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7)
53 #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6)
54 #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5)
55 #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4)
56 #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3)
57 #define aaaFromEVEX4of4(evex) ((evex) & 0x7)
58 
59 #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7)
60 #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6)
61 #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5)
62 #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f)
63 #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7)
64 #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3)
65 #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2)
66 #define ppFromVEX3of3(vex) ((vex) & 0x3)
67 
68 #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7)
69 #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3)
70 #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2)
71 #define ppFromVEX2of2(vex) ((vex) & 0x3)
72 
73 #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7)
74 #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6)
75 #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5)
76 #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f)
77 #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7)
78 #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3)
79 #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2)
80 #define ppFromXOP3of3(xop) ((xop) & 0x3)
81 
82 /*
83  * These enums represent Intel registers for use by the decoder.
84  */
85 
86 #define REGS_8BIT \
87  ENTRY(AL) \
88  ENTRY(CL) \
89  ENTRY(DL) \
90  ENTRY(BL) \
91  ENTRY(AH) \
92  ENTRY(CH) \
93  ENTRY(DH) \
94  ENTRY(BH) \
95  ENTRY(R8B) \
96  ENTRY(R9B) \
97  ENTRY(R10B) \
98  ENTRY(R11B) \
99  ENTRY(R12B) \
100  ENTRY(R13B) \
101  ENTRY(R14B) \
102  ENTRY(R15B) \
103  ENTRY(SPL) \
104  ENTRY(BPL) \
105  ENTRY(SIL) \
106  ENTRY(DIL)
107 
108 #define EA_BASES_16BIT \
109  ENTRY(BX_SI) \
110  ENTRY(BX_DI) \
111  ENTRY(BP_SI) \
112  ENTRY(BP_DI) \
113  ENTRY(SI) \
114  ENTRY(DI) \
115  ENTRY(BP) \
116  ENTRY(BX) \
117  ENTRY(R8W) \
118  ENTRY(R9W) \
119  ENTRY(R10W) \
120  ENTRY(R11W) \
121  ENTRY(R12W) \
122  ENTRY(R13W) \
123  ENTRY(R14W) \
124  ENTRY(R15W)
125 
126 #define REGS_16BIT \
127  ENTRY(AX) \
128  ENTRY(CX) \
129  ENTRY(DX) \
130  ENTRY(BX) \
131  ENTRY(SP) \
132  ENTRY(BP) \
133  ENTRY(SI) \
134  ENTRY(DI) \
135  ENTRY(R8W) \
136  ENTRY(R9W) \
137  ENTRY(R10W) \
138  ENTRY(R11W) \
139  ENTRY(R12W) \
140  ENTRY(R13W) \
141  ENTRY(R14W) \
142  ENTRY(R15W)
143 
144 #define EA_BASES_32BIT \
145  ENTRY(EAX) \
146  ENTRY(ECX) \
147  ENTRY(EDX) \
148  ENTRY(EBX) \
149  ENTRY(sib) \
150  ENTRY(EBP) \
151  ENTRY(ESI) \
152  ENTRY(EDI) \
153  ENTRY(R8D) \
154  ENTRY(R9D) \
155  ENTRY(R10D) \
156  ENTRY(R11D) \
157  ENTRY(R12D) \
158  ENTRY(R13D) \
159  ENTRY(R14D) \
160  ENTRY(R15D)
161 
162 #define REGS_32BIT \
163  ENTRY(EAX) \
164  ENTRY(ECX) \
165  ENTRY(EDX) \
166  ENTRY(EBX) \
167  ENTRY(ESP) \
168  ENTRY(EBP) \
169  ENTRY(ESI) \
170  ENTRY(EDI) \
171  ENTRY(R8D) \
172  ENTRY(R9D) \
173  ENTRY(R10D) \
174  ENTRY(R11D) \
175  ENTRY(R12D) \
176  ENTRY(R13D) \
177  ENTRY(R14D) \
178  ENTRY(R15D)
179 
180 #define EA_BASES_64BIT \
181  ENTRY(RAX) \
182  ENTRY(RCX) \
183  ENTRY(RDX) \
184  ENTRY(RBX) \
185  ENTRY(sib64) \
186  ENTRY(RBP) \
187  ENTRY(RSI) \
188  ENTRY(RDI) \
189  ENTRY(R8) \
190  ENTRY(R9) \
191  ENTRY(R10) \
192  ENTRY(R11) \
193  ENTRY(R12) \
194  ENTRY(R13) \
195  ENTRY(R14) \
196  ENTRY(R15)
197 
198 #define REGS_64BIT \
199  ENTRY(RAX) \
200  ENTRY(RCX) \
201  ENTRY(RDX) \
202  ENTRY(RBX) \
203  ENTRY(RSP) \
204  ENTRY(RBP) \
205  ENTRY(RSI) \
206  ENTRY(RDI) \
207  ENTRY(R8) \
208  ENTRY(R9) \
209  ENTRY(R10) \
210  ENTRY(R11) \
211  ENTRY(R12) \
212  ENTRY(R13) \
213  ENTRY(R14) \
214  ENTRY(R15)
215 
216 #define REGS_MMX \
217  ENTRY(MM0) \
218  ENTRY(MM1) \
219  ENTRY(MM2) \
220  ENTRY(MM3) \
221  ENTRY(MM4) \
222  ENTRY(MM5) \
223  ENTRY(MM6) \
224  ENTRY(MM7)
225 
226 #define REGS_XMM \
227  ENTRY(XMM0) \
228  ENTRY(XMM1) \
229  ENTRY(XMM2) \
230  ENTRY(XMM3) \
231  ENTRY(XMM4) \
232  ENTRY(XMM5) \
233  ENTRY(XMM6) \
234  ENTRY(XMM7) \
235  ENTRY(XMM8) \
236  ENTRY(XMM9) \
237  ENTRY(XMM10) \
238  ENTRY(XMM11) \
239  ENTRY(XMM12) \
240  ENTRY(XMM13) \
241  ENTRY(XMM14) \
242  ENTRY(XMM15) \
243  ENTRY(XMM16) \
244  ENTRY(XMM17) \
245  ENTRY(XMM18) \
246  ENTRY(XMM19) \
247  ENTRY(XMM20) \
248  ENTRY(XMM21) \
249  ENTRY(XMM22) \
250  ENTRY(XMM23) \
251  ENTRY(XMM24) \
252  ENTRY(XMM25) \
253  ENTRY(XMM26) \
254  ENTRY(XMM27) \
255  ENTRY(XMM28) \
256  ENTRY(XMM29) \
257  ENTRY(XMM30) \
258  ENTRY(XMM31)
259 
260 
261 #define REGS_YMM \
262  ENTRY(YMM0) \
263  ENTRY(YMM1) \
264  ENTRY(YMM2) \
265  ENTRY(YMM3) \
266  ENTRY(YMM4) \
267  ENTRY(YMM5) \
268  ENTRY(YMM6) \
269  ENTRY(YMM7) \
270  ENTRY(YMM8) \
271  ENTRY(YMM9) \
272  ENTRY(YMM10) \
273  ENTRY(YMM11) \
274  ENTRY(YMM12) \
275  ENTRY(YMM13) \
276  ENTRY(YMM14) \
277  ENTRY(YMM15) \
278  ENTRY(YMM16) \
279  ENTRY(YMM17) \
280  ENTRY(YMM18) \
281  ENTRY(YMM19) \
282  ENTRY(YMM20) \
283  ENTRY(YMM21) \
284  ENTRY(YMM22) \
285  ENTRY(YMM23) \
286  ENTRY(YMM24) \
287  ENTRY(YMM25) \
288  ENTRY(YMM26) \
289  ENTRY(YMM27) \
290  ENTRY(YMM28) \
291  ENTRY(YMM29) \
292  ENTRY(YMM30) \
293  ENTRY(YMM31)
294 
295 #define REGS_ZMM \
296  ENTRY(ZMM0) \
297  ENTRY(ZMM1) \
298  ENTRY(ZMM2) \
299  ENTRY(ZMM3) \
300  ENTRY(ZMM4) \
301  ENTRY(ZMM5) \
302  ENTRY(ZMM6) \
303  ENTRY(ZMM7) \
304  ENTRY(ZMM8) \
305  ENTRY(ZMM9) \
306  ENTRY(ZMM10) \
307  ENTRY(ZMM11) \
308  ENTRY(ZMM12) \
309  ENTRY(ZMM13) \
310  ENTRY(ZMM14) \
311  ENTRY(ZMM15) \
312  ENTRY(ZMM16) \
313  ENTRY(ZMM17) \
314  ENTRY(ZMM18) \
315  ENTRY(ZMM19) \
316  ENTRY(ZMM20) \
317  ENTRY(ZMM21) \
318  ENTRY(ZMM22) \
319  ENTRY(ZMM23) \
320  ENTRY(ZMM24) \
321  ENTRY(ZMM25) \
322  ENTRY(ZMM26) \
323  ENTRY(ZMM27) \
324  ENTRY(ZMM28) \
325  ENTRY(ZMM29) \
326  ENTRY(ZMM30) \
327  ENTRY(ZMM31)
328 
329 #define REGS_MASKS \
330  ENTRY(K0) \
331  ENTRY(K1) \
332  ENTRY(K2) \
333  ENTRY(K3) \
334  ENTRY(K4) \
335  ENTRY(K5) \
336  ENTRY(K6) \
337  ENTRY(K7)
338 
339 #define REGS_SEGMENT \
340  ENTRY(ES) \
341  ENTRY(CS) \
342  ENTRY(SS) \
343  ENTRY(DS) \
344  ENTRY(FS) \
345  ENTRY(GS)
346 
347 #define REGS_DEBUG \
348  ENTRY(DR0) \
349  ENTRY(DR1) \
350  ENTRY(DR2) \
351  ENTRY(DR3) \
352  ENTRY(DR4) \
353  ENTRY(DR5) \
354  ENTRY(DR6) \
355  ENTRY(DR7) \
356  ENTRY(DR8) \
357  ENTRY(DR9) \
358  ENTRY(DR10) \
359  ENTRY(DR11) \
360  ENTRY(DR12) \
361  ENTRY(DR13) \
362  ENTRY(DR14) \
363  ENTRY(DR15)
364 
365 #define REGS_CONTROL \
366  ENTRY(CR0) \
367  ENTRY(CR1) \
368  ENTRY(CR2) \
369  ENTRY(CR3) \
370  ENTRY(CR4) \
371  ENTRY(CR5) \
372  ENTRY(CR6) \
373  ENTRY(CR7) \
374  ENTRY(CR8) \
375  ENTRY(CR9) \
376  ENTRY(CR10) \
377  ENTRY(CR11) \
378  ENTRY(CR12) \
379  ENTRY(CR13) \
380  ENTRY(CR14) \
381  ENTRY(CR15)
382 
383 #define ALL_EA_BASES \
384  EA_BASES_16BIT \
385  EA_BASES_32BIT \
386  EA_BASES_64BIT
387 
388 #define ALL_SIB_BASES \
389  REGS_32BIT \
390  REGS_64BIT
391 
392 #define ALL_REGS \
393  REGS_8BIT \
394  REGS_16BIT \
395  REGS_32BIT \
396  REGS_64BIT \
397  REGS_MMX \
398  REGS_XMM \
399  REGS_YMM \
400  REGS_ZMM \
401  REGS_MASKS \
402  REGS_SEGMENT \
403  REGS_DEBUG \
404  REGS_CONTROL \
405  ENTRY(RIP)
406 
407 /*
408  * EABase - All possible values of the base field for effective-address
409  * computations, a.k.a. the Mod and R/M fields of the ModR/M byte. We
410  * distinguish between bases (EA_BASE_*) and registers that just happen to be
411  * referred to when Mod == 0b11 (EA_REG_*).
412  */
413 typedef enum {
415 #define ENTRY(x) EA_BASE_##x,
417 #undef ENTRY
418 #define ENTRY(x) EA_REG_##x,
419  ALL_REGS
420 #undef ENTRY
421  EA_max
423 
424 /*
425  * SIBIndex - All possible values of the SIB index field.
426  * Borrows entries from ALL_EA_BASES with the special case that
427  * sib is synonymous with NONE.
428  * Vector SIB: index can be XMM or YMM.
429  */
430 typedef enum {
432 #define ENTRY(x) SIB_INDEX_##x,
434  REGS_XMM
435  REGS_YMM
436  REGS_ZMM
437 #undef ENTRY
440 
441 /*
442  * SIBBase - All possible values of the SIB base field.
443  */
444 typedef enum {
446 #define ENTRY(x) SIB_BASE_##x,
448 #undef ENTRY
451 
452 /*
453  * EADisplacement - Possible displacement types for effective-address
454  * computations.
455  */
456 typedef enum {
460  EA_DISP_32
462 
463 /*
464  * Reg - All possible values of the reg field in the ModR/M byte.
465  */
466 typedef enum {
467 #define ENTRY(x) MODRM_REG_##x,
468  ALL_REGS
469 #undef ENTRY
471 } Reg;
472 
473 /*
474  * SegmentOverride - All possible segment overrides.
475  */
476 typedef enum {
486 
487 /*
488  * VEXLeadingOpcodeByte - Possible values for the VEX.m-mmmm field
489  */
490 typedef enum {
491  VEX_LOB_0F = 0x1,
493  VEX_LOB_0F3A = 0x3
495 
496 typedef enum {
499  XOP_MAP_SELECT_A = 0xA
501 
502 /*
503  * VEXPrefixCode - Possible values for the VEX.pp/EVEX.pp field
504  */
505 typedef enum {
509  VEX_PREFIX_F2 = 0x3
511 
512 typedef enum {
514  TYPE_VEX_2B = 0x1,
515  TYPE_VEX_3B = 0x2,
516  TYPE_EVEX = 0x3,
517  TYPE_XOP = 0x4
519 
520 struct reader_info {
521  const uint8_t *code;
524 };
525 
526 /*
527  * byteReader_t - Type for the byte reader that the consumer must provide to
528  * the decoder. Reads a single byte from the instruction's address space.
529  * @param arg - A baton that the consumer can associate with any internal
530  * state that it needs.
531  * @param byte - A pointer to a single byte in memory that should be set to
532  * contain the value at address.
533  * @param address - The address in the instruction's address space that should
534  * be read from.
535  * @return - -1 if the byte cannot be read for any reason; 0 otherwise.
536  */
537 typedef int (*byteReader_t)(const struct reader_info *arg, uint8_t* byte, uint64_t address);
538 
539 /*
540  * dlog_t - Type for the logging function that the consumer can provide to
541  * get debugging output from the decoder.
542  * @param arg - A baton that the consumer can associate with any internal
543  * state that it needs.
544  * @param log - A string that contains the message. Will be reused after
545  * the logger returns.
546  */
547 typedef void (*dlog_t)(void* arg, const char *log);
548 
552 #ifdef CAPSTONE_X86_REDUCE
554 #else
556 #endif
557 };
558 
559 /*
560  * The x86 internal instruction, which is produced by the decoder.
561  */
562 typedef struct InternalInstruction {
563  // from here, all members must be initialized to ZERO to work properly
566  /* true if the prefix byte corresponding to the entry is present; false if not */
578  /* contains the location (for use with the reader) of the prefix byte */
590  /* The value of the REX prefix, if present */
592  /* The segment override type */
595  uint8_t orgModRM; // save original modRM because we will modify modRM
596  /* The SIB byte, used for more complex 32- or 64-bit memory operands */
599  /* The displacement, used for memory operands */
602  /* The value of the two-byte escape prefix (usually 0x0f) */
604  /* The value of the three-byte escape prefix (usually 0x38 or 0x3a) */
606  /* SIB state */
611  /* 0xf2 or 0xf3 is xacquire or xrelease */
613 
614  /* The value of the vector extension prefix(EVEX/VEX/XOP), if present */
616 
617  /* Offsets from the start of the instruction to the pieces of data, which is
618  needed to find relocation entries for adding symbolic operands */
622 
623  // end-of-zero-members
624 
625  /* Reader interface (C) */
627 
628  /* Opaque value passed to the reader */
629  const void* readerArg;
630  /* The address of the next byte to read via the reader */
632 
633  /* Logger interface (C) */
635  /* Opaque value passed to the logger */
636  void* dlogArg;
637 
638  /* General instruction information */
639 
640  /* The mode to disassemble for (64-bit, protected, real) */
642  /* The start of the instruction, usable with the reader */
644  /* The length of the instruction, in bytes */
645  size_t length;
646 
647  /* Prefix state */
648 
649  /* The type of the vector extension prefix */
651 
652  /* The location where a mandatory prefix would have to be (i.e., right before
653  the opcode, or right before the REX prefix if one is present) */
655 
656  /* Sizes of various critical pieces of data, in bytes */
661 
662  uint8_t immSize; // immediate size for X86_OP_IMM operand
663 
664  /* opcode state */
665 
666  /* The last byte of the opcode, not counting any ModR/M extension */
668 
669  /* decode state */
670 
671  /* The type of opcode, used for indexing into the array of decode tables */
673  /* The instruction ID, extracted from the decode table */
675  /* The specifier for the instruction, from the instruction info table */
676  const struct InstructionSpecifier *spec;
677 
678  /* state for additional bytes, consumed during operand decode. Pattern:
679  consumed___ indicates that the byte was already consumed and does not
680  need to be consumed again */
681 
682  /* The VEX.vvvv field, which contains a third register operand for some AVX
683  instructions */
685 
686  /* The writemask for AVX-512 instructions which is contained in EVEX.aaa */
688 
689  /* The ModR/M byte, which contains most register operands and some portion of
690  all memory operands */
692 
693  // special data to handle MOVcr, MOVdr, MOVrc, MOVrd
694  uint8_t firstByte; // save the first byte in stream
695 
696  /* Immediates. There can be two in some cases */
699 
700  /* A register or immediate operand encoded into the opcode */
702 
703  /* Portions of the ModR/M byte */
704 
705  /* These fields determine the allowable values for the ModR/M fields, which
706  depend on operand and address widths */
710 
711  /* The Mod and R/M fields can encode a base for an effective address, or a
712  register. These are separated into two fields here */
715  /* The reg field always encodes a register */
717 
718  const struct OperandSpecifier *operands;
720 
721 /* decodeInstruction - Decode one instruction and store the decoding results in
722  * a buffer provided by the consumer.
723  * @param insn - The buffer to store the instruction in. Allocated by the
724  * consumer.
725  * @param reader - The byteReader_t for the bytes to be read.
726  * @param readerArg - An argument to pass to the reader for storing context
727  * specific to the consumer. May be NULL.
728  * @param logger - The dlog_t to be used in printing status messages from the
729  * disassembler. May be NULL.
730  * @param loggerArg - An argument to pass to the logger for storing context
731  * specific to the logger. May be NULL.
732  * @param startLoc - The address (in the reader's address space) of the first
733  * byte in the instruction.
734  * @param mode - The mode (16-bit, 32-bit, 64-bit) to decode in.
735  * @return - Nonzero if there was an error during decode, 0 otherwise.
736  */
739  const void* readerArg,
740  uint64_t startLoc,
742 
743 //const char *x86DisassemblerGetInstrName(unsigned Opcode, const void *mii);
744 
745 #endif
@ VEX_PREFIX_NONE
@ SIB_INDEX_NONE
int decodeInstruction(struct InternalInstruction *insn, byteReader_t reader, const void *readerArg, uint64_t startLoc, DisassemblerMode mode)
@ TYPE_NO_VEX_XOP
@ SEG_OVERRIDE_NONE
@ SEG_OVERRIDE_max
@ SEG_OVERRIDE_ES
@ SEG_OVERRIDE_CS
@ SEG_OVERRIDE_GS
@ SEG_OVERRIDE_SS
@ SEG_OVERRIDE_FS
@ SEG_OVERRIDE_DS
#define REGS_YMM
#define REGS_XMM
void(* dlog_t)(void *arg, const char *log)
#define ALL_REGS
#define ALL_SIB_BASES
@ XOP_MAP_SELECT_9
@ XOP_MAP_SELECT_A
@ XOP_MAP_SELECT_8
struct InternalInstruction InternalInstruction
int(* byteReader_t)(const struct reader_info *arg, uint8_t *byte, uint64_t address)
#define REGS_ZMM
VEXLeadingOpcodeByte
#define ALL_EA_BASES
static const char * arg(RzAnalysis *a, csh *handle, cs_insn *insn, char *buf, int n)
Definition: arm_esil32.c:136
const char int mode
Definition: ioapi.h:137
def log(text)
static int
Definition: sfsocketcall.h:114
unsigned short uint16_t
Definition: sftypes.h:30
long int64_t
Definition: sftypes.h:32
unsigned long uint64_t
Definition: sftypes.h:28
unsigned char uint8_t
Definition: sftypes.h:31
const struct InstructionSpecifier * spec
VectorExtensionType vectorExtensionType
const struct OperandSpecifier * operands
SegmentOverride segmentOverride
const uint8_t * code
void reader(void *n)
Definition: main.c:8